
1 / 12

Table of contents

Table of contents

JSON-Create

Description

Compatibility

Getting Started

Output Connections

Flow Element

General Properties

Working Mode Dependending Properties

Multi-line

External JSON-File

XML

XML-Dataset

External XML-File

Examples

Multi-line to JSON

XML to JSON

Multi-line to JSON using JSONata and JSONPath

Error handling

Private data

2 / 12

JSON-Create

Description

With JSON-Create you can generate JSON files from a multiline field, an external JSON file or from an XML.

The XML conversion comes with several expert options to satisfy all your needs.

The mutliline and the external JSON support using JSONata or JSONPath expressions as value, which will

be resolved by the app.

Compatibility

Switch Fall 2022 and higher.

Getting Started

Use one of our sample flows and drop a sample file into the flow.

Output Connections

This app requires one incoming connection - more incoming connections are allowed. The app supports

traffic light outgoing connections of the following types:

Log success: carries the created job if Append Result as Dataset is set to false
Data error: carries the incoming job if the operation fails at the first attempt.

Data success: carries the incoming job after the operation succeeds. If there are no data success

connections the output is simply suppressed (with logging a warning).

3 / 12

Flow Element

General Properties

Property Value Description

Generate

JSON From

enum [Multi-line | XML-File | XML-Dataset |

External XML-File | External JSON-File]

Defines the source of the

input file

Append

Result As

Dataset

Boolean
Defines a JSON (optionally

with Switch variables)

Job Name String
Defines the name proper

of the created JSON

Dataset

Name
String

Defines the dataset name

of the JSON

Working Mode Dependending Properties

Multi-line

Property Value Description

JSON String[] Defines a JSON (optionally with Switch variables)

Additional

datasets
String[]

The content of the dataset will be added to the master JSON and

can be accessed by a JSONPATH expression like $... The added

objects will be removed after all queries are done.

Additional

file
String

Allows to define an additional JSON file which will be appended to

the master JSON. This can be useful if information from this file

must be retrieved.The added objects will be removed after all

queries are done.

Object

name
String Defines the name of the appended object of the additional file.

External JSON-File

Property Value Description

File Path String Path to external XML file

4 / 12

Property Value Description

Delete

after

Injection

Boolean
Defines if the external file should be deleted or not after it is

injected as Switch job

Additional

datasets
String[]

The content of the dataset will be added to the master JSON and

can be accessed by a JSONPATH expression like $... The added

objects will be removed after all queries are done.

Additional

file
String

Allows to define an additional JSON file which will be appended to

the master JSON. This can be useful if information from this file

must be retrieved.The added objects will be removed after all

queries are done.

Object

name
String Defines the name of the appended object of the additional file.

XML

Property Value Description

Expert

Settigns
Boolean

Enable or disable additional settings for the conversion from XML to

JSON - click HERE further details

Defaults:

https://github.com/NaturalIntelligence/fast-xml-parser/blob/292fb784334043214e29fa60adbb5630a36f5768/docs/v4/2.XMLparseOptions.md

5 / 12

{
 preserveOrder: false,
 attributeNamePrefix: "",
 attributesGroupName: "$",
 textNodeName: "_",
 ignoreAttributes: false,
 removeNSPrefix: false,
 allowBooleanAttributes: false,
 parseTagValue: false,
 parseAttributeValue: false,
 trimValues: true,
 cdataPropName: false,
 stopNodes: [],
 alwaysCreateTextNode: false,
 commentPropName: false,
 unpairedTags: [],
 processEntities: true,
 htmlEntities: false,
 ignoreDeclaration: false,
 ignorePiTags: true
}

XML-Dataset

Property Value Description

Dataset Name String Name of the XML-Dataset that should be converted to JSON

External XML-File

Property Value Description

File Path String Path to external XML file

Delete after

Injection
Boolean

Defines if the external file should be deleted or not after it is

injected as Switch job

6 / 12

Examples

Multi-line to JSON

Input

Job-Name: Test.pdf

NOTE: To the array anyArray an open bracket [must be added in order to resolve the switch

variable

Result

The variable [Job.NameProper] was successfully resolved to test .

{
 "name": "test",
 "version": "1.0.0",
 "private": true,
 "license": "UNLICENSED",
 "anyArray": []
}

7 / 12

XML to JSON

Input

<?xml version="1.0" encoding="UTF-8"?>
<orders version="1.0">
 <order>
 <ID>1</ID>
 <name>Order1</name>
 </order>
 <order>
 <ID>2</ID>
 <name>Order1</name>
 </order>
</orders>

Result

{
 "orders": {
 "order": [
 {
 "ID": "1",
 "name": "Order1"
 },
 {
 "ID": "2",
 "name": "Order1"
 }
],
 "$": {
 "version": "1.0"
 }
 }
}

8 / 12

Multi-line to JSON using JSONata and JSONPath

The JSONata expression must have the prefix "jsonata=" and the JSONPath expression must have

"jsonpath=" as prefix. Notice that the whole string must be inside quotation marks (like below).

There is also a sample flow 'multiline additional dataset + file and jsonata + jsonpath' that can be used to

reproduce this example.

Please notice to use the 'lookupDataset.json' as input file and to select 'lookupExternalFile.json' as external

file.

The result is send to the log success connection.

Input

{
 "name": "Sample",
 "paper": "A4",
 "product": "Product1",
 "fromAdditionalFile": {
 "paperDetails": "jsonpath=$.lookupExternalFile[?(@.name == @root.paper)]"
 },
 "fromAdditionalDataset": {
 "webshop1": {
 "totalAmount": "jsonata=$sum(lookupDataset[source='webshop1'].amount)"
 },
 "webshop2": {
 "totalAmount": "jsonata=$sum(lookupDataset[source='webshop2'].amount)"
 }
 }
}

Dataset

The content of the dataset named 'lookupDataset' will be appended to the input JSON during runtime and

is deleted after all queries are done.

Content:

9 / 12

[
 {
 "name": "Product2",
 "source": "webshop1",
 "amount": 100
 },
 {
 "name": "Product2",
 "source": "webshop1",
 "amount": 5
 },
 {
 "name": "Product1",
 "source": "webshop1",
 "amount": 1
 },
 {
 "name": "Product1",
 "source": "webshop2",
 "amount": 1
 },
 {
 "name": "Product1",
 "source": "webshop2",
 "amount": 10
 }
]

External JSON

The content of the external JSON will be appended to the input JSON during runtime and is deleted after all

queries are done. The name of the object is defined by the Name property - In this case it is

'lookupExternalFile'

Content:

10 / 12

[
 {
 "name": "A4",
 "dimensions": {
 "width": 210,
 "height": 297
 }
 },
 {
 "name": "A3",
 "dimensions": {
 "width": 420,
 "height": 297
 }
 }
]

JSON during runtime

{
 "name": "Sample",
 "paper": "A4",
 "product": "Product1",
 "fromAdditionalFile": {
 "paperDetails": "jsonpath=$.lookupExternalFile[?(@.name == @root.paper)]"
 },
 "fromAdditionalDataset": {
 "webshop1": {
 "totalAmount": "jsonata=$sum(lookupDataset[source='webshop1'].amount)"
 },
 "webshop2": {
 "totalAmount": "jsonata=$sum(lookupDataset[source='webshop2'].amount)"
 }
 },
 "lookupExternalFile": [...],
 "lookupDataset": [...]
}

Result

Resolved JSON.

11 / 12

{
 "name": "Sample",
 "paper": "A4",
 "product": "Product1",
 "includes": [
 "additionalDataset",
 "additionalFile",
 "jsonata",
 "jsonpath"
],
 "fromAdditionalFile": {
 "paperDetails": {
 "name": "A4",
 "dimensions": {
 "width": 210,
 "height": 297
 }
 }
 },
 "fromAdditionalDataset": {
 "webshop1": {
 "totalAmount": 106
 },
 "webshop2": {
 "totalAmount": 11
 }
 }
}

Error handling

This app uses two types of errors:

job data: if an handled error occures (e.g. wrong file format), the error message is logged in the

switch messages.

job fail: if any other error occurs, job will fail and gets sent to the problem jobs folder. The thrown

error gets logged as error and can be looked up in the switch messages.

Private data

The following private data tags will be set if an error occurs:

Tag Value | Type Description

lastErrorElement String the name of the flow element

lastErrorId jsonCreateError

12 / 12

Tag Value | Type Description

lastErrorCode Number
an error code that defines the type of error that

occured

lastErrorMessage String detailed error message

Error Codes:

enum ERROR_CODES {
 generalError = 0,
 fileHandlingError = 1,
 fileFormatError = 2,
 conversionError = 3,
 invalidParameterValue = 4,
 parsingError = 5,
}

