Table of contents

e Table of contents
e JSON-Map
o Description
o Compatibility
o Getting Started
o OQOutput Connections
o Flow Element
= General Properties
» Working Mode Dependending Properties
= Multi-line
= External File

o JSONata

= Extended functions
o Examples

= Multi-line

= Multi-line with variable
= Multi-line with function
= Bindings
= Lookup Tables
= Extended function uuid
o Error handling
o Private data

1/15

JSON-Map

Description

With JSON-Map, you can map/convert JSON content using a JSONata expression.

JSONata is a very powerful query language that allows you to define functions, variables and lookup tables.
This makes it really easy to transform data according to your wishes.

Compatibility

Switch Fall 2022 and higher.

Getting Started

Use one of our sample flows and drop a sample file into the flow.

Output Connections

This app requires one incoming connection - more incoming connections are allowed. The app supports
traffic light outgoing connections of the following types:

e Log success: carries the mapped json

o Data error: carries the incoming job if the operation fails at the first attempt.

e Data success: carries the incoming job after the operation succeeds. If there are no data success
connections the output is simply suppressed (with logging a warning).

2/15

Flow Element

General Properties

Property Value Description
Enum [Job Defines the source of data. Only a valid JSON is
DataSource
| Dataset] supported.
DatasetName String Name of the JSON dataset that should be mapped.
Enum
) [Multi-line Defines if the jsonata expression is defined as multi-
WorkingMode . .
| External line field or as external file
File]
Define a JSON object where each property can be
accessed by $<key> in the JSONata expression.
A binding is any value that's only available during
runtime.
E.Q.
Bindings String J
{
"variables": {
"key1": "value1",
"key2": "value2"
}
}
Defines <key>=<value> pairs, where the value is the
path to json file.
The json file will be read and the content of the json is
accessable by using $lookupTables.<key> in the
LookupTables String jsonata expression.

E.g.

formats=<pathToFormats JSON>

3/15

Property Value Description

Defines names of JSON datasets where the content is
accessable by using $lookupTables.<datasetName> in
the jsonata expression.

LookupDatasets String
Each dataset should be entered in a separate line.
Make sure the dataset name is not equal to any other
lookup table key.

. Name of the resulting dataset. If a dataset with the
ResultDatasetName String . .
same name already exists it will be overwritten.

Working Mode Dependending Properties

Multi-line

Property Value Description

Define a valid JSONata expression that should be used

MappingJsonataMultiline String for mapping

External File

Property Value Description

MappingJsonataFile String Path to a file that contains a valid JSONata expression.

JSONata

The documentation for JSONata is well written and there is also an exerciser which is highly recommanded
to be used for testing expressions before using them in Switch. The exerciser gives you instant feedback!

Please note that the extended functions are only available in the Enfocus Switch environment and not in the
exerciser!

Documentation: https://docs.jsonata.org/overview.html
Exerciser [Tester: https://try.jsonata.org/
Extended functions

As powerful as JSONata is, it cannot cover all functions. Therefore we have added some functions to
JSONata which may be helpful in an Enfocus Switch environment.

4/15

https://docs.jsonata.org/overview.html
https://try.jsonata.org/

NPM Path module: All functions of the NPM module are available as JSONata function. For example use
$path.delimiter to get the delimiter of the operating system.

Check out the following link for more details https://nodejs.org/docs/latest/api/path.html
NPM UUID module: The following functions of the NPM module are available as JSONata function:

e NIL

* parse
o stringify
e Vi

e v3

o v4

e V5

e validate
e version

For example use $uuid.v1() to call the v1 function of the module.

Check out the following link for more details https://www.npmjs.com/package/uuid
Examples

Multi-line

Input JSON

5/15

https://nodejs.org/docs/latest/api/path.html
https://www.npmjs.com/package/uuid

Hapte il
"FirstName": "Fred",
"Surname": "Smith",
"Age'": 28,
"Phone": [
{
"type": "home",
"number": "0203 544 1234"

"type": "office",
"number": "01962 001234"

"type": "office",
"number": "01962 001235"

"type": "mobile",
"number": "Q77 7700 1234"

JSONata expression

This expression joins the value of the properties

number of mobile.
{
""name": FirstName & " " & Surname,
"mobile": Phone[type = "mobile"].number
b
Result
{
""name": "Fred Smith",

"mobile": "0@77 7700 1234"

6/15

and

and searches for the phone

Multi-line with variable

Input JSON

Hapte 1l
"FirstName": "Fred",
"Surname": "Smith",
"Age"': C
"Phone": [
{
"type": "home",
"number": "0203 544 1234"

"type": "office",
"number": "01962 001234"

"type": "office",
"number": "01962 001235"

"type": "mobile",
"number": "@77 7700 1234"

JSONata expression

The following expression defines a variable

$fullName := FirstName & " " & Surname;
{
""name": $fullName,
"mobile": Phone[type = "mobile"].number
¥
)
Result

7115

which is then used in the resulting object.

"name": "Fred Smith",
"mobile": "0Q77 7700 1234"

Multi-line with function

Input JSON

Hapte il
"FirstName": "Fred",
"Surname": "Smith",
"Age": 0
"Phone": [
{
"type": "home",
"number": "0203 544 1234"

by
{
"type": "office",
"number": "01962 001234"
by
{
"type": "office",
"number": "01962 001235"
by
{
"type": "mobile",
"number": "0@77 7700 1234"
}

JSONata expression

The following expression uses a separate function to get a phone number from the type.

8/15

$getPhoneNumberFromType := function($type) {(
$$.Phone[type = $typel.number

)}
{
""name": FirstName & " " & Surname,
"mobile": $getPhoneNumberFromType('mobile")
}
)
Result
{
"name": "Fred Smith",
""mobile": "0@77 7700 1234"
}
Bindings

If you need to pass a variable to the JSONata expression, bindings can be used. A binding can be accessed

by using $ in the expression.

While this may not make much sense when using the multiline mode, it is very helpful if the expression is
defined in an external file.

Input JSON

9/15

Hapte il
"FirstName": "Fred",
"Surname": "Smith",
"Age'": 28,
"Phone": [
{
"type": "home",
"number": "0203 544 1234"

"type": "office",
"number": "01962 001234"

"type": "office",
"number": "01962 001235"

"type": "mobile",
"number": "Q77 7700 1234"

JSONata expression

This expression joins the value of the properties

number of mobile.
{
""name": FirstName & " " & Surname,
"mobile": Phone[type = "mobile"].number,
"jobName": $variables.jobName
)
Bindings
{
"variables": {
"jobName": " [Job.Name]"
}
)

10/15

and

and searches for the phone

Result

"name": "Fred Smith",
"mobile": "@77 7700 1234",
""jobName": "contacts.json"

Lookup Tables

A lookup table can be accessed by using $lookupTables. in the expression.

Input JSON

Hapte il
"FirstName": "Fred",
"Surname": "Smith",
"Age"': 0
"Phone": [
{
"type": "home",
"number": "0203 544 1234"

Yy

{
"type": "office",
"number": "01962 001234"

Yy

{
"type": "office",
"number": "01962 001235"

Yy

{
"type": "mobile",
"number": "@77 7700 1234"

}

]
}
Lookup JSON

How a lookup table is defined in the app:

11/15

[] [] Edit multi-line text: Lookup tables

Enter a description...

addresses=/Users/Shared/DEV/switch-apps/json-map/docfapp/sample-resources/ addresses.jsun|

Content of lookup table:

"'customerRefId": 1,
"'street": "2 Long Road",
"city": "Winchester",
"postcode": 'S022 5PU"

""customerRefId": 2,

"street": "56 Letsby Avenue",
"city": "Winchester",
""postcode": '"S022 4wD"

""customerRefId": 3,
"street": "1 Preddy Gate",
"city": "Southampton",
"postcode'": '"S014 OMG"

JSONata expression

JSONata searches for an element in the lookup table where 'customerRefld' is equal to the 'ID' of the input
JSON.

12/15

"name": FirstName & " " & Surname,
"mobile": Phone[type = "mobile"].number,
"address": $lookupTables.addresses[customerRefId=$$.ID]

}
Result
{
"name": "Fred Smith",
"mobile": "@77 7700 1234",
"address": {
""customerRefId": 1,
"street": "2 Long Road",
"city": "Winchester",
"postcode'": 'S022 5PU"
}
b

Extended function uuid

Input JSON

13/15

Hapte il
"FirstName": "Fred",
"Surname": "Smith",
"Age'": 28,
"Phone": [
{
"type": "home",
"number": "0203 544 1234"

"type": "office",
"number": "01962 001234"

"type": "office",
"number": "01962 001235"

"type": "mobile",
"number": "Q77 7700 1234"

JSONata expression

This expression uses the function of the module, which generates a UUID.
{
"id": $uuid.vi(),
""name": FirstName & " " & Surname,
"mobile": Phone[type = "mobile"].number
)
Result
{
"id": '"8ce885c0-3df7-1lef-ab6f6-cl7f56ffa379",
"name": "Fred Smith",
"mobile": "@77 7700 1234"
¥

14/15

Error handling

This app uses two types of errors:

e job data: if an handled error occures (e.g. wrong file format), the error message is logged in the

switch messages.

¢ job fail: if any other error occurs, job will fail and gets sent to the problem jobs folder. The thrown
error gets logged as error and can be looked up in the switch messages.

Private data

The following private data tags will be set if an error occurs:

Tag
lastErrorElement

lastErrorld

lastErrorCode

lastErrorMessage

Error Codes:

enum ERROR_CODES {
generalError =

fileHandlingError =
fileFormatError =
conversionError =
invalidParameterValue =

parsingError =

Value | Type
String

jsonCreateError

Number

String

Description

the name of the flow element

an error code that defines the type of error that
occured

detailed error message

15/15

